| PROJECT: | | | | | STATION: | | | | | | | CULVERT DESIGN FORM | | | | | | | |--|--|---------------|----------------------|------------------------------|------------------------|--|-------------------------|--------|----------------|---------------------|--------------------|---------------------|---|-------------------------|-----------------------------------|--------|----------|--| | | | | | | | SHEET OF | | | | | | | DESIGNER/DATE: | | | OF | | | | | | | | | | | | | | | REVIEWER/DATE: | | | OF | | | | | | | HYDROLOGICAL DATA | | | | | | | | | | | | | | | | | | | SEE ADD'L SHEETS | □ ROUTING: □ OTHER: | | | | -
-
-
- | TOTAL | FI OW | | HEADWATER CALCULATIONS | | | | | | | | | | | | | | | CULVERT DESCRIPTION: | | TOTAL
FLOW | FLOW
PER | | NLET CO | ILET CONTROL | | | OUTLET CON | | | | 1 | 1 | ROL
ATER | ΤΗΣ | | | | _ | TERIAL-SHAPE-SIZE-ENTRANCE | Q
(m³/s) | BARREL
Q/N
(1) | HW _i
/D
(2) | HWi | FALL
(3) | EL _{hi}
(4) | TW (5) | d _c | $\frac{d_c + D}{2}$ | h _o (6) | k _e | H
(7) | EL _{ho}
(8) | CONTROL
HEADWATER
ELEVATION | OUTLET | COMMENTS | (1)
(2) | TECHNICAL FOOTNOTES: (1) USE Q/NB FOR BOX CULVERTS (2) HW _i /D = HW/D OR HW ₁ /D FROM DESIGN CHARTS (3) FALL = HW _i - (EL _{bd} - EL _{sf}); FALL IS ZERO FOR CULVERTS ON GRADE | | | | | (4) EL _{hi} =HW _i + EL _i (INVERT OF INLET CONTROL SECTION) (5) TW BASED ON DOWNSTREAM CONTROL OR FLOW DEPTH IN CHANNEL | | | | | | | (6) $h_o = TW$ or $(d_c + D)/2$ (WHICHEVER IS GREATER)
(7) $H = (1+k_e+(19.63 \text{ n}^2\text{L})/R^{1.33}) \text{ V}^2/2g$
L (8) $EL_{ho} = EL_o + H + h_o$ | | | | | | | a
f
hd
hi
ho
i
o
sf | a Approximate f Culvert Face hd Design Headwater hi Headwater in Inlet Control ho Headwater in Outlet Control i Inlet Control Section o Outlet | | | | | FS/DISCUSSION: | | | | | | | CULVERT BARREL SELECTED: SIZE: SHAPE: MATERIAL: ENTRANCE: | | | | | | ## CULVERT DESIGN FORM (Conventional End Treatment) Figure 31-10D